
RJD

1

A Ravenscar-Java Profile Implementation

Hans Søndergaard
University College - Vitus Bering Denmark

joint work with
Bent Thomsen and Anders P. Ravn

Aalborg University, Denmark

JTRES 2006, Paris, October 2006

Ravenscar-Java Development

RJD

2

The Ravenscar-Java Development Project

• Implement the Ravenscar-Java Profile on an aJ-100
processor

• Investigate whether Real-Time UML is useful when
designing embedded real-time systems

• Investigate through development of an industrial case
how useful the Ravenscar-Java Profile is for design and
development of industrial embedded systems with real-
time requirements

• Compare the Ravenscar-Java solution with a C++
solution.

http://www.cs.aau.dk/ravenscar/

RJD

3

Outline

• An industrial case from FOSS
– experiences and observations

• The aJ-100 Java processor
• Implementation of the Ravenscar-Java Profile
• Summary
• Discussion items

RJD

4

Industrial Case from FOSS

MilkoScan™ FT2
The instrument uses Fourier Transform Infrared Spectroscopy (FTIR)
to identify quality parameters in milk

Existing FTIR program: written in C/C++

Purpose: redesign and implement the FTIR program using Ravenscar

RJD

5

The FTIR instrument

enclosed in a Thermobox

FTIR instrument

Interfero-
gram

RJD

6

Functional requirements

• Temperature reading and regulation
– reading

• 5 times/sec
– regulation

• 1 time/sec
• Interferometer measurement

– reading IR-detector
• every 333 µs

• Other usual functionalities:
– Watchdog, Monitoring, Logging, …

RJD

7

Process requirements

4D = T333 msperiodicExtern. Comm

6 (lowest)D = T5000 msperiodicLogging

4D = T333 msperiodicLimits monitor

5D = T1000 msperiodicWatchdog

1 (highest)200 µs333 µssporadicInterferometer
measurement

3100 ms 1000 msperiodicTemp regulator

210 ms200 msperiodicTemp reader

Priority
(P)

Deadline
(D)

Period/Inter-arrival
time (T)

Periodic/Sporadic
activity

RJD

8

Overview of Future Foss system ?

Development
Tools

Target System

Memory AnalyserMemory Analyser

Compilers, etcCompilers, etc

Eclipse, etc.Eclipse, etc.

WCET AnalyserWCET Analyser

Embedded Real-Time ApplicationEmbedded Real-Time Application

Ravenscar-Java ProfileRavenscar-Java Profile C/C++
interface

C/C++
interface

Embedded Java processor: aJ-100Embedded Java processor: aJ-100Windows/LinuxWindows/Linux

RJD

9

Ravenscar-Java for this application ?

• For industrial use:
– Ravenscar-Java is simple and easy to use
– deadline is missing
– no pause and termination methods are specified

• Ravenscar-Java is not a subset of RTSJ
– adds new classes

•Initializer, PeriodicThread
•SporadicEvent, SporadicInterrupt

• Scoped memory is difficult to understand and use
– Peter Dibble: 40 pages (“hard to use”, p. 318)
– Andy Wellings: 36 pages (“one of the most complicated

areas of the RTSJ”, p. 170)
– Instead, use: Real-Time garbage collector ?

RJD

10

Our implementation on the aJ-100 processor

RJD

11

The aJ-100 processor

• uses Java bytecode as its native instruction set
• embedded real-time multi-threading kernel

– microcoded in hardware, including:
• a priority pre-emptive scheduler, 32 priority levels
• a priority ceiling protocol
• periodic threads

• has all the common embedded peripherals
– I/O Ports, Serial Interface, Ethernet, Timers, etc.

RJD

12

Programming aJile

• A runtime system based upon
– J2ME (Java 2 Platform Micro Edition)
– CLDC (Connected Limited Device Configuration 1.0)

• An aJile Java API to access the processor
– 85 interfaces and classes, e.g.

• PianoRoll, PeriodicThread

• rawJEM (low level access to physical memory)
• GpioPin (controls general purpose IO pins)

• JEM Builder and Charade:
– tools for static linking and loading, etc.

• Other development tools are general purpose, e.g. Eclipse

RJD

13

Ravenscar-Java classes

• Real-time threads
– Initializer thread
– Periodic thread

• Sporadic event and interrupt
• Sporadic event handler
• Memory

– Immortal memory
– Raw memory
– (Scoped memory)

• Time classes

RJD

14

Real-time threads

java.lang.Object

|
+--java.lang.Thread

|
+--javax.ravenscar.RealtimeThread

|

+--javax.ravenscar.Initializer
|

+--javax.ravenscar.NoHeapRealtimeThread
|

+--javax.ravenscar.PeriodicThread

RJD

15

Periodic thread

public class PeriodicThread extends NoHeapRealtimeThread
{ ...
private com.ajile.jem.PeriodicThread aJileTh;

public PeriodicThread (PriorityParameters pp, PeriodicParameters p,
Runnable logic)

{
super (pp,p,ImmortalMemory.instance(),logic);
aJileTh = new aJilePeriodicThread();
...

}

public final void run() {
info = SetupInfoArray.getInstance().getSetupInfo(this);
aJileTh.makePeriodic (period, priority, …);
aJileTh.start();

}

static boolean waitForNextPeriod() {
com.ajile.jem.PeriodicThread.cycle();
return true;

}
}

RJD

16

aJilePeriodicThread

private class aJilePeriodicThread extends com.ajile.jem.PeriodicThread

{

public void run() {

// run until start time:

for(long count = info.startTime/info.period; count > 0; count--)

{

PeriodicThread.waitForNextPeriod();

}

// run from start time:

for (;;)

{

logic.run();

PeriodicThread.waitForNextPeriod();

}

}

}

RJD

17

Performance

0
200
400
600
800

1000
1200
1400
1600
1800
2000

5 10 20 40 80

n (# periodic threads)

T
m

in
 (

µs
ec

)
Linear

• Just as effective as the native implementation

• Changing from thread-to-thread: < 1 µsec

• Execution time nearly the same as JOP, and comparable with C

• Can run up to 500 periodic threads.

RJD

18

Summary

• The Ravenscar-Java Profile
– implemented on a native Java processor

• about 35 classes, and 12 utility classes
– easier than expected

• lines of code:
PeriodicThread: 25
SporadicEventHandler: 35
SporadicInterrupt: 20

• total: 47 * 35 ≈ 1700 lines of code
• Just as efficient as the native implementation

RJD

19

Discussion items

• A revised profile
– free the profile from the bindings of RTSJ
– use the Midlet as model

• start, pause and termination states
– use a real-time garbage collector
– throw away scoped memory

